Collatz Blueprint for Failure

The article below is about the Collatz conjecture. The conjecture is also known as the 3n+1 conjecture, the Ulam conjecture, the Syracuse problem, as the hailstone sequence or hailstone numbers, or as Wondrous numbers. The paper tries to be a cornerstone for solving the conjecture in the near future.

 

Copyright & Disclaimer

 

 

 SATOCONOR.COM

Paul Stadfeld ‘Blueprint for Failure: How to Construct a Counterexample to the Collatz Conjecture’ 5.3. (2006)

Full paper

SATOCONOR.COM Journal of Number Theory

 

Blueprint for Failure

How to Construct a Counterexample to the

Collatz Conjecture

By Paul Stadfeld

For comments: mensanator@aol.com

Version 1.1 Jun 2, 2006

 

HOME of SATOCONOR.COM

 

Abstract:

A proof of the Collatz Conjecture has so far been elusive. But it may easily be resolved by finding a counterexample. In this paper we study the 3n+C extensions of the Collatz Conjecture (most of which fail) to learn what a counterexample to 3n+1 would look like if it exists.

 

The study is based on the novel approach of creating a data structure (Sequence Vector) based on relative Collatz sequences without regard to their values. Functions are then derived from the data structure to allow algebraic analysis of the Collatz sequences.

 

These functions (Hailstone and Crossover Point) are the key to understanding why 3n+1 works and why 3n+5 fails. This understanding will then permit the construction of counterexamples as opposed to simple brute force searching. Furthermore, we will find that counterexamples must meet stringent structural requirements (the Blueprint) that will tell us when a counterexample CANNOT be constructed, which has deep implications concerning proving the Collatz Conjecture.

 

We will also gain new insight on the relationship between the positive and negative domain with regard to 3n+1, that they are not separate problems but are actually a single problem from the viewpoint of relative Collatz sequences. This, too, has deep implications, for certain proofs in one domain imply proof in the other which seems to have been overlooked up to now with startling consequences.

 

The Collatz Conjecture will NOT be proved or disproved in this paper. What will be shown are tools and insights that may further the search for an actual proof.

 

1. Introduction

The Collatz Conjecture1,2 states that for any positive integer n, a sequence created using the rules

 

1)    successor(n) -> n/2     if n is even

2)    successor(n) -> 3*n + 1 if n is odd

 

always reaches the loop cycle 4, 2, 1, 4, 2, 1, . Studied extensively, the conjecture appears to be true, but no proof has been found. It would, however, be easy to prove false. A counterexample can be readily verified. The fact that no counterexample has been located does not necessarily mean one does not exist. Current thinking is a counterexample in the form of a non-trivial loop cycle would have hundreds of thousands1 of elements and may very well be beyond computational power for any foreseeable future.

 

That is, if we simply do a brute force search. Large numbers are no barrier if we have some blueprint that tells us how to build them. For example, the 1st 6th Generation Type [1,2] Mersenne Hailstone (see Appendix B) has 53,328 decimal digits and could never be found by simple brute force. Yet, ith, kth Generation Type [1,2] Mersenne Hailstones have a simple blueprint:

 

   

 

 

So the smart way to find a counterexample is to discover a blueprint that will take us directly to a counterexample even if it’s unimaginably huge.

 

2. The Blueprint

A blueprint has been found together with the tools to construct a counterexample. They are based on how one navigates through the Collatz Tree3. The system presented here has deep implications, not just for tree navigation, but for the ultimate truth of the entire conjecture. It all starts with a data structure designed to efficiently describe relative pathways in the Collatz tree.

 

2.1. Sequence Vector

To navigate from one node on the Collatz tree to any other, one follows a sequence of Rules defined by the Collatz Conjecture. Although proper Collatz sequences always move right and down on the tree, there is no mathematical reason why one can't also move up and left (provided the moves are legal) by inverting the standard Collatz Rules.

 

Thus, we have

 

           Rule1: n/2

           Rule2: n*3+1    

    InverseRule1: n*2

    InverseRule2: (n-1)/3

 

A rule based data structure describing a Collatz sequence is called a Sequence Vector.

 

By definition, a Sequence Vector always begins with an odd number and always ends with at least one iteration of Rule1 (the terminating number may be even or odd).

 

For example, the sequence starting on 27 and ending on 31

 

     27_82

        41_124

            62

            31

 

is produced by the proper sequence

 

    [Rule2, Rule1, Rule2, Rule1, Rule1]

 

We can abbreviate this by simply counting how many consecutive iterations there are of the same rule.

 

    [1*Rule2, 1*Rule1, 1*Rule2, 2*Rule1]

 

Since a proper Collatz sequence cannot have more than 1 consecutive iteration of Rule2, we can further abbreviate the sequence by assuming every block of Rule1 is separated by exactly one Rule2 and only showing the Rule1 blocks (this assumption is why the Sequence Vector is defined to start on an odd number and end with a Rule1).

 

    [1*Rule1, 2*Rule1]

 

Now, since every item shown is a block of Rule1, we can further abbreviate by just showing the iteration count of each block.

 

    [1, 2]

 

In the above example, the sequence from 27 to 31 is just a small portion of the complete sequence from 27 to its normal termination at 1. The full sequence vector would be

 

    [1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1,

     2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1, 5, 4]

 

Sequence Vectors can describe a full sequence from n to 1 or any sub-sequence.

 

Thus, every proper Collatz sequence can be described by a simple list of integers >0 (0 is not a valid Sequence Vector element since the implied Rule2 to the left of each element would result in two consecutive iterations of Rule2, which is not permitted).

 

Sequence Vectors are not value-centric. They describe the structure of the sequence without specifying values. The sequence from 27 to 31 is a

 

    Type [1, 2] Sequence Vector

 

since the [1, 2] pattern occurs many times on the Collatz tree (it occurs seven times in the full sequence from 27 to 1):

 

    27_82

       41_124

           62

           31

    . . .

 

    107_322

        161_484

            242

            121

    . . .

 

    91_274

       137_412

           206

           103

    . . .

 

    155_466

        233_700

            350

            175

 

    . . .

 

    395_1186

         593_1780

              890

              445

 

    . . .

 

    251_754

        377_1132

             566

             283_850

                 425_1276

                      638

                      319

 

(the last two occurrences of the seven [1,2] patterns are consecutive)

 

If we were to list all the Type [1, 2] Sequence Vector starting points,

 

    3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, . . .

 

 the ith occurrence (for i: 0, 1, 2, 3, ...) starts at

 

   

 

And if we were to list all the Type [1, 2] Sequence Vector ending points,

 

    4, 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, . . .

 

the ith occurrence (for i: 0, 1, 2, 3, ...) ends at

 

   

 

These will be derived from any arbitrary Sequence Vector by the Hailstone Function.

 

2.2. Hailstone Function

For a generic Collatz sequence such as

 

     g_e

       d_c

         b

         a

 

the Sequence Vector is [1, 2].

 

We find the Hailstone Function by playing the Sequence Vector backwards using the InverseRules:

 

   

 

working out all the algebra, we get

 

 

       

 

Now we need to solve the equation by finding an integer a>0 such that g is also an integer:

 

    for a=1        

 

    for a=2      

 

    for a=3      

 

    for a=4    

 

So 4 is the Hailstone derived from Sequence Vector [1, 2] whose Seed is 3.

 

    Check:    3_10

                 5_16

                    8

                    4

 

The Hailstone Function

 

   

 

can also be written using powers of 2 and 3:

 

   

 

Each element i of the Sequence Vector (sv) applies the successor function

 

   

 

so if the Hailstone Function of [1, 2] is

 

   

 

then the Hailstone Function for [3, 1, 2] would be

 

   

 

If we collect all the numerator terms inside the parentheses and call the collection Z, then every Sequence Vector has a Hailstone Function of the form

 

   

 

There is a relatively simple algorithm to calculate the values of X,Y,Z from a Sequence Vector so that we don't have to do all the algebra:

 

Hailstone Function Parameters Algorithm12

 

  given a Sequence Vector of n elements [s0, s1, s2, ... sn-1]

  example: for [1, 2, 3, 4] n=4

 

  X = 2 raised to the power of the sum of the elements

 

       

 

 

  Y = 3 raised to the power of the count of the elements

 

       

 

  Z is a bit tricky, Z is the sum of n terms, each of

    which is a power of 3 multiplied by a power of 2

 

·         create a template of n terms

 

               

 

·         the exponents of the powers of three count from 0 to n-1 from left to right

 

               

 

·         the exponents of the powers of 2 starting from the left are

·         the sum of all the elements except the last 1 (1+2+3)

·         the sum of all the elements except the last 2 (1+2)

·         the sum of all the elements except the last 3 (1)

·         the sum of all the elements except the last 4 (0)

 

       

 

for [1, 2, 3, 4] we get the Hailstone Function

 

   

 

for which a=1 and g=11

 

        11_34

           17_52

              26

              13_40

                 20

                 10

                  5_16

                     8

                     4

                     2

                     1

 

Solving the Hailstone function gives the first of infinite integer solutions. And if we know the first one (a0, g0), we can find any solution. We saw in Section 2.1 that for Sequence Vector [1, 2], the ith seed is i*8+3 and the ith hailstone is i*9+4. We can generalize these from the Hailstone Function:

 

                   

 

To find (a0, g0) for any Sequence Vector, we can reformulate the general Hailstone Function

 

                   

 

as a problem in Linear Congruence4,5: if g is an integer, then (X*a-Z) is divisible by Y, in other words

 

                   

 

Linear congruence problems can be solved by using the Extended Euclidean Algorithm6,7 to find the modular inverse of X and Y:

 

                   

 

Now simply plug a0 into the Hailstone Function to get g0.

 

A linear congruence can be solved if and only if the Greatest Common Divisor10,11 of X and Y divides Z. With X being a power of 2 and Y a power of 3, GCD(X, Y) is always 1 and will always divide Z. This means that

 

·        every Linear Congruence derived from a Hailstone Function is solvable

·        every Hailstone Function has a first solution (a0)

·        every Hailstone Function has an infinite number of solutions (ai)

·        every legal Sequence Vector appears on the Collatz Tree infinitely many times

 

And from the Hailstone Function we calculate the Crossover Point.

 

2.3. Crossover Point

From any legal Sequence Vector, there exists a Hailstone Function with parameters X,Y,Z. From the Hailstone Function Parameters, we can compute the Crossover Point.

 

First, note that the Hailstone Function is the equation of a straight line (with slope X/Y and intercept -Z/Y). Because X is a power of 2 and Y is a power of 3, the slope can never be 1, and so it cannot be parallel to the identity line whose slope is exactly 1. It must, therefore, intercept the identity line. This interception is called the Crossover Point.

 

Second, at the intercept point, since this is on the identity line, the function of a must be equal to a, so that

 

                   

 

becomes

 

                   

 

Thus, we make the following derivation:

 

                   

 

But a is the point of intersection, so it is the Crossover Point (CP), so

 

                   

 

Every Sequence Vector/Hailstone Function has a Crossover Point, but if and only if the Crossover Point is an integer, then the Sequence Vector is a loop cycle! Every finite Collatz sequence has a first number which we’ll call the Seed. Every finite sequence has a last number which we’ll call the Hailstone. A Sequence Vector describes a loop cycle if Seed=Hailstone (i.e., the sequence returns to its starting value). The Crossover Point is the rational number Z/(X-Y). If that rational number does not reduce to an integer, the Sequence Vector cannot be a loop cycle since a Collatz sequence contains only integers (i.e., the place where Seed=Hailstone cannot occur in a Collatz sequence). If it is an integer, then from the fact that this integer is also on the line of the identity function, that point  represents an integer where Seed=Hailstone and thus, implies that the Sequence Vector is a loop cycle.

 

For example, take the Sequence Vector [2]

 

    g_c

      b

      a

 

The associated Hailstone Function is

 

                   

 

so

 

                   

 

which means Sequence Vector [2] is a loop cycle.

 

    1_4

      2

      1

 

By convention, for those Sequence Vectors that form loop cycles, the odd number of smallest magnitude in the loop cycle is called the Loop Point, so a=1 is the Loop Point of Sequence Vector [2].

 

If the Collatz Conjecture is true, there is only one positive Loop Point (1) whose Sequence Vector is [2] and it forms the root of the Collatz Tree. Any Loop Point/Sequence Vector other than (1)/[2] would be a counterexample.

 

2.4. 3n+C Extensions

The Crossover Point becomes our blueprint for studying how the Collatz Conjecture fails. Unfortunately, the only example of a Loop Point we have (Sequence Vector [2]) is trivial. But by extending the conjecture to 3n+C (where C is any odd positive integer), we can find numerous counterexamples to study via the Crossover Point.

 

First of all, a quick review of various values of C reveals that:

 

  • The conjecture appears to be true for every C that is a power of 3 (including C=1).
  • The conjecture appears to be false for every C not a power of 3

 

(See Section 3 for proof of these points)

 

Second, we need to make the following adjustments:

 

  • The Extended Hailstone Function

 

          

 

The Hailstone Function Parameters X,Y,Z are invariant under the extensions.        

 

 

  • The Extended Crossover Point

 

                   

 

From the blueprint (Crossover Point), we will be able to determine exactly why the 3n+C systems work and why they fail. Once we fully understand the failure mechanism, we may be able to extend it back to 3n+1 to construct a counterexample.

 

3. The Essence of Failure

There are two ways the conjecture can fail:

 

  • A sequence goes to infinity.
  • A sequence ends in a loop cycle other than the trivial loop cycle whose Sequence Vector is [2].

 

The possibility of a sequence going to infinity is beyond the scope of this paper and will not be mentioned again. Our blueprint for construction of a counterexample applies to the second case. But note that we specify Sequence Vector [2] as the sequence termination instead of 1. Under the 3n+C extensions, the trivial loop cycle has an invariant Sequence Vector. But the actual value of the Loop Point does vary. It is C.

 

    C_4C

      2C

       C

 

A terminating value of 1 is a value-centric specification that applies only to 3n+1.

 

In addition, the trivial loop whose Sequence Vector is [1,2] and whose root is C, the tree built from that root is identical in structure to the 3n+1 tree:

 

    6C 20C 64C

    3C_10C 32C

        5C_16C

            8C

            4C

            2C

             C

 

Note that the coefficients of C are the same as the nodes on the 3n+1 tree. So on the trivial loop tree of any 3n+C system, only multiples of C are on this tree. For any 3n+C system n=1 is never a multiple of C, so n=1 is never found on the trivial tree. Thus, n=1 is always found on a non-trivial tree. This proves the conjecture is false for any C not a power of 3 (as observed in Section 2.4).

 

Under 3n+C, any Sequence Vector other than [2] whose Extended Crossover Point is an integer is a loop cycle and makes the conjecture false for that value of C. An integer implies that the denominator of the Extended Crossover Point

 

                   

 

is a unit, either because

 

  • it started out as a unit (X-Y is 1 or -1)
  • it became a unit by factor canceling (the combined factors of Z*C cancelled all the factors of X-Y)

 

 

3.1. Trivial Loops

When X-Y is a unit (as is the case for Sequence Vector [2]), CP is trivially an integer and forms a trivial loop cycle. Trivial loop cycles are determined solely by the Sequence Vector and are common to all 3n+C systems.

 

Thus, every 3n+C system has a trivial Loop Point at C. And no others since 4-3 is the only pair of powers of 2 and powers of 3 whose difference is +1.

 

3.2. Non-Trivial Loops

That leaves factor canceling as the only means of failure. And there’s plenty of it.

 

Example 3n+5:

 

        trivial loop at 5:     5, 20, 10, 5

 

    non-trivial loop at 1:     1, 8, 4, 2, 1

 

    non-trivial loop at 19:    19, 62, 31, 98, 49, 152, 76, 38,19

 

    non-trivial loop at 23:    23, 74, 37, 116, 58, 29, 92, 46, 23

 

    non-trivial loop at 187:   187, 566, 283, 854, 427, 1286, 643, 1934,

                               967, 2906, 1453, 4364, 2182, 1091, 3278,

                               1639, 4922, 2461, 7388, 3694, 1847, 5546,

                               2773, 8324, 4162, 2081, 6248, 3124, 1562,

                               781, 2348, 1174, 587, 1766, 883, 2654, 1327,

                               3986, 1993, 5984, 2992, 1496, 748, 374, 187

 

    non-trivial loop at 347:   347, 1046, 523, 1574, 787, 2366, 1183, 3554,

                               1777, 5336, 2668, 1334, 667, 2006, 1003,

                               3014, 1507, 4526, 2263, 6794, 3397, 10196,

                               5098, 2549, 7652, 3826, 1913, 5744, 2872,

                               1436, 718, 359, 1082, 541, 1628, 814, 407,

                               1226, 613, 1844, 922, 461, 1388, 694, 347

 

3n+5 has 5 non-trivial Loop Points: 1, 19, 23, 187 and 347. Picking one of these Loop Points, say 187, its Sequence Vector is

 

[1,1,1,1,1,2,1,1,2,1,2,3,2,1,1,1,5]

 

 From which we get the Extended Hailstone Function

 

          

 

And Extended Crossover Point (C is kept separate in the numerator to illustrate factor canceling)

 

                   

 

When the common factors 5, 71 and 14303 are cancelled, we are left with 11*17=187 which is the Loop Point for this loop cycle. But since the Sequence Vector is a loop cycle, every cyclic permutation of the Sequence Vector must also have an integer Extended Crossover Point. And since in a cyclic permutation, the count and sum of the elements are invariant, only Z changes in the Extended Crossover Point.

 

[1,1,1,1,2,1,1,2,1,2,3,2,1,1,1,5,1]    (283*71*14303)*(5)/(5*71*14303)

[1,1,1,2,1,1,2,1,2,3,2,1,1,1,5,1,1]   (7*61*71*14303)*(5)/(5*71*14303)

[1,1,2,1,1,2,1,2,3,2,1,1,1,5,1,1,1]    (643*71*14303)*(5)/(5*71*14303)

[1,2,1,1,2,1,2,3,2,1,1,1,5,1,1,1,1]    (967*71*14303)*(5)/(5*71*14303)

[2,1,1,2,1,2,3,2,1,1,1,5,1,1,1,1,1]   (1453*71*14303)*(5)/(5*71*14303)

[1,1,2,1,2,3,2,1,1,1,5,1,1,1,1,1,2]   (1091*71*14303)*(5)/(5*71*14303)

[1,2,1,2,3,2,1,1,1,5,1,1,1,1,1,2,1] (11*149*71*14303)*(5)/(5*71*14303)

[2,1,2,3,2,1,1,1,5,1,1,1,1,1,2,1,1] (23*107*71*14303)*(5)/(5*71*14303)

[1,2,3,2,1,1,1,5,1,1,1,1,1,2,1,1,2]   (1847*71*14303)*(5)/(5*71*14303)

[2,3,2,1,1,1,5,1,1,1,1,1,2,1,1,2,1]  (47*59*71*14303)*(5)/(5*71*14303)

[3,2,1,1,1,5,1,1,1,1,1,2,1,1,2,1,2]   (2081*71*14303)*(5)/(5*71*14303)

[2,1,1,1,5,1,1,1,1,1,2,1,1,2,1,2,3]  (11*71*71*14303)*(5)/(5*71*14303)

[1,1,1,5,1,1,1,1,1,2,1,1,2,1,2,3,2]    (587*71*14303)*(5)/(5*71*14303)

[1,1,5,1,1,1,1,1,2,1,1,2,1,2,3,2,1]    (883*71*14303)*(5)/(5*71*14303)

[1,5,1,1,1,1,1,2,1,1,2,1,2,3,2,1,1]   (1327*71*14303)*(5)/(5*71*14303)

[5,1,1,1,1,1,2,1,1,2,1,2,3,2,1,1,1]   (1993*71*14303)*(5)/(5*71*14303)

 

Although Z changes for every Sequence Vector, note that every Z contains the factors 71 and 14303. Combined with the 5 factor from C, every denominator becomes 1 and every Extended Crossover Point becomes an integer. And if you check, you’ll find that the 17 integer Extended Crossover Points are the 17 odd numbers in the original sequence. The convention of taking the smallest magnitude number of the loop cycle as the Loop Point is so that we don’t have to constantly list all the cyclic permutations. When we refer to a Loop Point and its Sequence Vector, it is assumed that we are collectively referring to all the cyclic permutations unless otherwise noted.

 

Equally important, Z never has 5 as a factor (otherwise, this Sequence Vector would be a loop in 3n+1 also). It is the combined factors of Z and C that create non-trivial loops. This immediately leads to the

 

Z Conjecture        The factors of Z alone cannot cancel all the factors of the denominator,

                              C must contribute at least one useful factor (where “useful” means >3).

 

A factor must be “useful” because the denominator, being the difference between a power of 2 and a power of 3 can never have a 3 as a factor. This explains why when C is a power of 3, it doesn’t fail the conjecture. Or perhaps we should say it has exactly the same loop cycles as 3n+1 because 1 has no useful factors either. If the conjecture is true for 3n+1, it’s true for all C that are a power of 3 (as observed in section 2.4).

 

3.3. Factor Congruence

If we are given C, we can now construct Sequence Vectors that are non-trivial loops. This is done via Factor Congruence matching. For example, suppose C is a prime (41). Being prime, C has only one factor: 41. This factor is the only one available to cancel the factors uncancelled by Z. So for CP to be an integer, it is necessary that X-Y has a factor of 41. In other words

 

             

     

From The Hailstone Function, we know that X is a power of 2 and Y is a power of 3. So that

 

             

 

Also from the Hailstone Function, we have that

 

            

 

where sv is the Sequence Vector. Thus, only those Sequence Vectors where a power of 2 is the same congruence class mod 41 as a power of 3 can be a potential loop (potential because Z must supply the rest of the factors).

 

With our example 41, the congruence classes are

 

            

 

The only classes they have in common are: {1,9,32,40}

 

p or q

2p (mod 41)

3q (mod 41)

 

(pattern repeats every 20)

(pattern repeats every 8)

0

1

1

1

2

3

2

4

9

3

8

27

4

16

40

5

32

38

6

23

32

7

5

14

8

10

1

9

20

3

10

40

9

11

39

27

12

37

40

13

33

38

14

25

32

15

9

14

16

18

1

17

36

3

18

31

9

19

21

27

20

1

40

21

2

38

22

4

32

23

8

14

 

Table 1: Congruence classes of powers of 2 & 3 mod 41.

 

So p and q must be chosen so that the congruence classes match. The first such match is p=0 and q=0 match. But a Sequence Vector cannot have 0 length or have a 0 sum, so that pairing is disallowed. To be a legal Sequence Vector p must be >= q. And to be a positive loop, it must be that p>q*(log 3/log 2).  Under those restrictions, the first available pair is pq(15,9), where both congruences classes are 9. The next available one is pq(10,4) for congruence class 40. The pair pq(5,6) cannot form a loop even though they are both congruence class 32 because p must be greater than q (in other words, there are no legal Sequence Vectors with more 3n+C steps than n/2 steps). And any loop in pq(20,16) would be in the negative domain since p< q*(log 3/log 2). A good candidate would be pq(20,8).

 

But there are many different Sequence Vectors where p=20 and q=8. Constructing them is equivalent to partitioning 20 objects into 8 containers such that each container has at least 1 object. Using an algorithm13 for counting and generating such partitions, we can search every partition for an integer Crossover Point. For (20,8) the number of partitions is 50,388 and we have to check them all because Factor Congruence matching is a necessary but not sufficient condition for loop cycle formation.

 

Running the Partition Generator for p=20 q=8 and testing for integer Crossover Points yields

 

     [1,1,9,2,1,3,1,2] 47

     [1,2,1,1,9,2,1,3] 19

     [1,3,1,2,1,1,9,2] 11

     [1,9,2,1,3,1,2,1] 91

     [2,1,1,9,2,1,3,1] 49

     [2,1,3,1,2,1,1,9] 1

     [3,1,2,1,1,9,2,1] 37

     [9,2,1,3,1,2,1,1] 157

 

So there are 8 Sequence Vectors that produce loops. But upon close inspection, we see that all 8 are cyclic permutations of the same numbers. That means the 8 integer Crossover Points are the 8 odd numbers of a single loop cycle:

 

1_44

  22

  11_74

     37_152

         76

         38

         19_98

            49_188

                94

                47_182

                    91_314

                       157_512

                           256

                           128

                            64

                            32

                            16

                             8

                             4

                             2

                             1

 

1 is a Loop Point in 3n+41 whose Sequence Vector [2,1,3,1,2,1,1,9] is a non-trivial loop cycle.

 

QED

 

See Appendix A  for an analysis of a composite C.

 

Using the Extended Crossover Point as our blueprint and Factor Congruence matching as our tools, we now have the means to construct counterexamples to the 3n+C extensions. And although the lack of useable factors prevents us from constructing any counterexample to 3n+1, it would be premature to leap to the conclusion that 3n+1 must be true. Up to this point, we have been assuming the Z Conjecture has been true. Actually, it doesn’t matter to Factor Congruence matching whether the Z Conjecture is true or not. If it’s false, the loop cycles constructed by Factor Congruence matching are still loop cycles, it’s just that they won’t be the only non-trivial loop cycles. For 3n+1 to be true, we must show that the Z Conjecture is true so that when we say no loop cycles can be constructed by Factor Congruence matching, then no loop cycles can be constructed period.

 

For that we will need to make one more extension.

 

4. The Negative Domain

The Collatz Conjecture is specified as a problem in the positive domain. We can, of course, extend it to the negative domain just as we extended 3n+1 to 3n+C. We quickly discover that the negative domain is rather uninteresting in that the conjecture fails for every C in 3n+C. Every 3n+C (including 3n+1) has Loop Points at –C, -5C and –17C.

 

But we’re looking to understand why it fails, that’s how we were able to derive the Blueprint for Failure in the preceding sections. And although there is nothing in the negative domain that teaches us anything about trivial loops or Factor Congruence that we don’t already know, it does contain this bombshell:

 

Proof that the Z Conjecture is false!

 

The Loop Points at –C and –5C (with Sequence Vectors [1] and [1,2] respectively) are trivial because from their Crossover Points, (X-Y) starts out as a unit (-1). There is no need for factor canceling.

 

But –17C is not trivial and forms a loop cycle even when C=1:

 

Sequence Vector [1, 1, 1, 2, 1, 1, 4]

 

    g_s

      r_q

        p_o

          n_m

            l

            k_j

              i_h

                f_e

                  d

                  c

                  b

                  a       

 

   

 

 

              

 

 

    -17_-50

        -25_-74

            -37_-110

                 -55_-164

                      -82

                      -41_-122

                           -61_-182

                                -91_-272

                                    -136

                                     -68

                                     -34

                                     -17

 

The Crossover Point is an integer because the factors of Z cancel all the factors of X-Y proving that the Z Conjecture is actually false. It is possible for all the factors of X-Y to be cancelled without C contributing any useful factors. So even though the counterexample –17 is in the negative domain, the fact that it exists at all has deep implications for the positive domain. We still are unable to construct a counterexample to 3n+1 via Factor Congruence matching, but we cannot rule out that a construction based on the Z Conjecture being false is possible.

 

 

5. Conclusions

As we have seen, a counterexample must be one of three types:

 

  • Trivial loop cycles
  • Factor Congruence loop cycles
  • Z Conjecture loop cycles

 

The Trivial loops for 3n+C are +C, -C and –5C. Factor Congruence loop cycles have been proven impossible to construct for 3n+1. That leaves the Z Conjecture as the only way 3n+1 can be false.

 

Unfortunately, we have no blueprint that can exploit the Z Conjecture being false, so we cannot construct counterexamples even knowing such a counterexample exists. And the fact that the only known counterexample to the Z Conjecture is in the negative domain doesn’t mean there can’t be one in the positive domain. Factor canceling is independent of the domain, so we can’t say it’s impossible for there to be a counterexample in the positive domain of 3n+1.

 

Thus, the Collatz Conjecture continues to be as elusive as ever.

 

-o0o- Please also visit: The new Journal of Randomics site and the cumulated result of the site here

 

Appendix A

 

3n+85085, a Factor Congruence case study

 

From Section 3.3, we found the non-trivial Loop Point by searching only those Sequence Vectors whose Hailstone Function parameters had matching congruence classes mod C.

 

But not all matching parameters generated Loop Points. And what if C were composite, say 85085. Why 85085? Because it is the composite of the 5 primes > 3: 85085 = 5 * 7 * 11 * 13 * 17. Thus, there will be a lot of factors available to the Crossover Point Function to form Loop Points.

 

Running the collatz_C function14 for C=85085 over the range -2000000 to +2000000, a total of 156 Loop Points were located.

 

When C is composite, some of its factors may not be necessary to form a Loop Point. In such cases, the unused factors will appear as the greatest common divisor of the odd numbers in the loop sequence. So the gcd will tell us the divisor whose congruence classes must be matched:

 

divisor = 85085/gcd

 

And just as factor congruence matching is necessary but not sufficient for Loop Points, there can be any number of Loop Points found for any given divisor.

 

Since there are 5 factors in 85085 any of which may or may not be cancelled, there are 32 possible gcd/divisor pairs:

 

fac5    fac7    fac11   fac13   fac17   divisor gcd

1       1       1       1       1       1       85085

1       1       1       1       17      17      5005

1       1       1       13      1       13      6545

1       1       1       13      17      221     385

1       1       11      1       1       11      7735

1       1       11      1       17      187     455

1       1       11      13      1       143     595

1       1       11      13      17      2431    35

1       7       1       1       1       7       12155

1       7       1       1       17      119     715

1       7       1       13      1       91      935

1       7       1       13      17      1547    55

1       7       11      1       1       77      1105

1       7       11      1       17      1309    65

1       7       11      13      1       1001    85

1       7       11      13      17      17017   5

5       1       1       1       1       5       17017

5       1       1       1       17      85      1001

5       1       1       13      1       65      1309

5       1       1       13      17      1105    77

5       1       11      1       1       55      1547

5       1       11      1       17      935     91

5       1       11      13      1       715     119

5       1       11      13      17      12155   7

5       7       1       1       1       35      2431

5       7       1       1       17      595     143

5       7       1       13      1       455     187

5       7       1       13      17      7735    11

5       7       11      1       1       385     221

5       7       11      1       17      6545    13

5       7       11      13      1       5005    17

5       7       11      13      17      85085   1

 

The 156 Loop Points are distributed such that all possible gcds are represented. So we have to calculate matches for each of the 32 divisors.

 

But we're just trying to verify that Factor Congruence matching actually works, so instead, we'll take the known Loop Points and see if they hold up to the congruence matching scrutiny.

 

See Table A1.

 

Which they do. That means we can verify the Loop Points with the partition generator program. Generating every partition of  P items in Q groups is equivalent to creating every possible Sequence Vector whose sum is P and count is Q.

 

So, grabbing a P,Q pair from the stats table

 

python partition_generator.py 4 3

searching: 3 Sequence Vectors

 

[1,1,2] -146965       *

[1,2,1] -177905

[2,1,1] -224315

 

we get three Sequence Vectors with integer Crossover Points (the one marked * is the Loop Point shown on the stats table).

 

But note that the three vectors are all cyclic permutations of the same numbers. that means they are all part of the same loop:

 

-146965__-355810

         -177905__-448630

                  -224315__-587860

                           -293930

                           -146965

 

So the partition generator will return exactly Q Sequence Vectors for each Loop Point found.

 

Exactly?

 

python partition_generator.py 4 2

searching: 3 Sequence Vectors

 

[1,3] 60775

[3,1] 133705

[2,2] 85085

 

Here Q is 2 but we got 3 vectors. But that's because the third vector is a different loop cycle. But it only has 1 vector. That's because it's actually a second generation type [2] vector, so we'll mark these false positives with an x. The multi-generation Loop Points will always have less than Q vectors.

 

python partition_generator.py 6 4

searching: 10 Sequence Vectors

 

[1,1,1,3] -325325     *

[1,1,3,1] -445445

[1,3,1,1] -625625

[3,1,1,1] -895895

 

[1,1,2,2] -365365     *

[1,2,2,1] -505505

[2,2,1,1] -715715

[2,1,1,2] -515515

 

[1,2,1,2] -425425     x

[2,1,2,1] -595595

 

Here the stats table shows two Loop Points for P=6 Q=4 and that's what we got, not counting the multi-generation vector.

 

More interesting is the set of Loop Points found for P=8 Q=5

 

python partition_generator.py 8 5

searching: 35 Sequence Vectors

 

[1,1,1,1,4] 1380995   *

[1,1,1,4,1] 2114035

[1,1,4,1,1] 3213595

[1,4,1,1,1] 4862935

[4,1,1,1,1] 7336945

 

[1,1,1,2,3] 1485715   *

[1,1,2,3,1] 2271115

[1,2,3,1,1] 3449215

[2,3,1,1,1] 5216365

[3,1,1,1,2] 3933545

 

[2,1,1,1,3] 2231845

[1,1,1,3,2] 1695155   *

[1,1,3,2,1] 2585275

[1,3,2,1,1] 3920455

[3,2,1,1,1] 5923225

 

[1,1,2,1,3] 1642795   *

[1,2,1,3,1] 2506735

[2,1,3,1,1] 3802645

[1,3,1,1,2] 2873255

[3,1,1,2,1] 4352425

 

[1,1,2,2,2] 1852235   *

[1,2,2,2,1] 2820895

[2,2,2,1,1] 4273885

[2,2,1,1,2] 3226685

[2,1,1,2,2] 2441285

 

[1,2,1,1,3] 1878415   *

[2,1,1,3,1] 2860165

[1,1,3,1,2] 2166395

[1,3,1,2,1] 3292135

[3,1,2,1,1] 4980745

 

[1,2,1,2,2] 2087855   *

[2,1,2,2,1] 3174325

[1,2,2,1,2] 2402015

[2,2,1,2,1] 3645565

[2,1,2,1,2] 2755445

 

Once separated into groups of cyclic permutations, we find we have seven groups - seven Loop Points. But the stats table only lists six. Look at the Loop Point on the last loop: 2087855.

 

The original Loop Point search only extended to 2000000, so the partition generator found one missed in the original search. The Sequence Vector search will always find all the Loop Points...

 

...provided we know what P and Q to test. Doubling the collatz_C test range, we find yet another Loop Point: 3182179.

 

This one didn't get picked up in the Sequence Vector search because its loop has P=27 Q=17 and that combination hadn't appeared before in the stats table. That warrants another run of the partition generator.

 

python partition_generator.py 27 17

searching: 5311735 Sequence Vectors

 

[1,1,1,1,1,2,1,1,2,1,2,3,2,1,1,1,5] 3182179    *

[1,1,1,1,2,1,1,2,1,2,3,2,1,1,1,5,1] 4815811

[1,1,1,2,1,1,2,1,2,3,2,1,1,1,5,1,1] 7266259

[1,1,2,1,1,2,1,2,3,2,1,1,1,5,1,1,1] 10941931

[1,2,1,1,2,1,2,3,2,1,1,1,5,1,1,1,1] 16455439

[2,1,1,2,1,2,3,2,1,1,1,5,1,1,1,1,1] 24725701

[1,1,2,1,2,3,2,1,1,1,5,1,1,1,1,1,2] 18565547

[1,2,1,2,3,2,1,1,1,5,1,1,1,1,1,2,1] 27890863

[2,1,2,3,2,1,1,1,5,1,1,1,1,1,2,1,1] 41878837

[1,2,3,2,1,1,1,5,1,1,1,1,1,2,1,1,2] 31430399

[2,3,2,1,1,1,5,1,1,1,1,1,2,1,1,2,1] 47188141

[3,2,1,1,1,5,1,1,1,1,1,2,1,1,2,1,2] 35412377

[2,1,1,1,5,1,1,1,1,1,2,1,1,2,1,2,3] 13290277

[1,1,1,5,1,1,1,1,1,2,1,1,2,1,2,3,2] 9988979

[1,1,5,1,1,1,1,1,2,1,1,2,1,2,3,2,1] 15026011

[1,5,1,1,1,1,1,2,1,1,2,1,2,3,2,1,1] 22581559

[5,1,1,1,1,1,2,1,1,2,1,2,3,2,1,1,1] 33914881

 

[1,2,1,2,2,1,1,1,1,3,1,1,1,1,2,2,4] 6109103

[2,1,2,2,1,1,1,1,3,1,1,1,1,2,2,4,1] 9206197

[1,2,2,1,1,1,1,3,1,1,1,1,2,2,4,1,2] 6925919

[2,2,1,1,1,1,3,1,1,1,1,2,2,4,1,2,1] 10431421

[2,1,1,1,1,3,1,1,1,1,2,2,4,1,2,1,2] 7844837

[1,1,1,1,3,1,1,1,1,2,2,4,1,2,1,2,2] 5904899    *

[1,1,1,3,1,1,1,1,2,2,4,1,2,1,2,2,1] 8899891

[1,1,3,1,1,1,1,2,2,4,1,2,1,2,2,1,1] 13392379

[1,3,1,1,1,1,2,2,4,1,2,1,2,2,1,1,1] 20131111

[3,1,1,1,1,2,2,4,1,2,1,2,2,1,1,1,1] 30239209

[1,1,1,1,2,2,4,1,2,1,2,2,1,1,1,1,3] 11350339

[1,1,1,2,2,4,1,2,1,2,2,1,1,1,1,3,1] 17068051

[1,1,2,2,4,1,2,1,2,2,1,1,1,1,3,1,1] 25644619

[1,2,2,4,1,2,1,2,2,1,1,1,1,3,1,1,1] 38509471

[2,2,4,1,2,1,2,2,1,1,1,1,3,1,1,1,1] 57806749

[2,4,1,2,1,2,2,1,1,1,1,3,1,1,1,1,2] 43376333

[4,1,2,1,2,2,1,1,1,1,3,1,1,1,1,2,2] 32553521

 

And, lo and behold, another Loop Point is found: 5904899.

 

Unfortunately, verification was halted before the end of the stats table was reached. For the simple reason that as P and Q get large, Sequence Vector searching becomes intractable:

 

python partition_generator.py 48 24

searching: 16123801841550 Sequence Vectors

 

python partition_generator.py 52 24

searching: 196793068630200 Sequence Vectors

 

python partition_generator.py 56 32

searching: 2488589544741300 Sequence Vectors

 

python partition_generator.py 60 30

searching: 59132290782430712 Sequence Vectors

 

.

.

.

 

python partition_generator.py 492 264

searching:

66189415264331559482776409694993032407028709677550596291300192890141937773498314175433116122939513634124491233746912456893016976209252459301489030

Sequence Vectors

 

And there may be some more hiding in other congruence match pairs that aren't on the original stats table. Noting that the congruence generations reach as high as 13, 4 there may be others.

 

And if there are, they'll fall into their proper place in the Factor Congruence table.

 

-------------------------------------------------------------


            Table A1: Factor Congruence Statistics for C = 85085

 

Column      Definition

------      ---------------------------------------------------------------

Loop Point  Smallest (magnitude) odd number in the loop sequence.

 

gcd         Greatest Common Divisor of the odd numbers in the loop sequence.

            Composite of the factors of C that DO NOT cancel anything in the

            denominator of the Crossover Point Function (X-Y).

            Gcd*divisor = 85085.

 

divisor     Composite of the factors of C that DO cancel factors in the

            denominator of the Crossover Point Function (X-Y).

            Gcd*divisor = 85085.

 

P           From the Hailstone Function, X is always a power of 2.

            P is the exponent, i.e., X = 2**P.

            P is the sum of elements in the Sequence Vector, for [1,2,3,4], P = 10

 

Q           From the Hailstone Function, Y is always a power of 3.

            Q is the exponent, i.e., Y = 3**Q.

            Q is the count of elements in the Sequence Vector, for [1,2,3,4], Q = 4

 

ccP         Congruence class of 2**P (mod divisor).

            For Factor Congruence matching, ccP must equal ccQ.

 

ccQ         Congruence class of 3**Q (mod divisor).

            For Factor Congruence matching, ccP must equal ccQ.

 

cclenP      Length of the set of congruence class of 2**P (mod divisor).

            Congruence class repeats at this frequency.

            ccP = cclenP*n + gen1P   for n=0,1,2,3...

 

cclenQ      Length of the set of congruence class of 3**Q (mod divisor).

            Congruence class repeats at this frequency.

            ccQ = cclenQ*n + gen1Q   for n=0,1,2,3...

 

gen1P       The first legal power of 2 that is congruence class ccP.

            (P=0 is invalid for Sequence Vectors)

 

gen1Q       The first legal power of 3 that is congruence class ccQ.

            (Q=0 is invalid for Sequence Vectors)

 

genP        Congruence class generation:

            IF P>cclenP THEN

                genP = (P - gen1P)/cclenP

            ELSE

                genP = 1

 

genQ        Congruence class generation:

            IF Q>cclenQ THEN

                genQ = (Q - gen1Q)/cclenQ

            ELSE

                genQ = 1

 

notes       Where noted, Factor Congruence matching does not apply.

            These are the loops (+C -C -5C -17C) that are independent of C.

            No factors are cancelled in the Crossover Point Function and as a result,

            the gcd for these will be 85085.

 

Loop Point  gcd   divisor   P   Q   ccP   ccQ    cclenP cclenQ gen1P gen1Q genP genQ notes

-85085      85085   1       1   1   2     3                                          -C

85085       85085   1       2   1   0     3                                          +C

17017       17017   5       3   1   3     3      4      4      3     1     1    1

-425425     85085   1       3   2   0     0                                          -5C

6545        6545    13      4   1   3     3      12     3      4     1     1    1

60775       12155   7       4   2   2     2      3      6      1     2     2    1

-146965     7735    11      4   3   5     5      10     5      4     3     1    1

391391      17017   5       5   3   2     2      4      4      1     3     2    1

323323      17017   5       5   3   2     2      4      4      1     3     2    1

7735        7735    11      6   2   9     9      10     5      6     2     1    1

10829       1547    55      6   2   9     9      20     20     6     2     1    1

-365365     5005    17      6   4   13    13     8      16     6     4     1    1

-325325     5005    17      6   4   13    13     8      16     6     4     1    1

5005        5005    17      7   2   9     9      8      16     7     2     1    1

3575        715     119     7   2   9     9      24     48     7     2     1    1

7865        715     119     7   2   9     9      24     48     7     2     1    1

41327       2431    35      8   4   11    11     12     12     8     4     1    1

31603       2431    35      8   4   11    11     12     12     8     4     1    1

1485715     6545    13      8   5   9     9      12     3      8     2     1    2

1695155     6545    13      8   5   9     9      12     3      8     2     1    2

1878415     6545    13      8   5   9     9      12     3      8     2     1    2

1642795     6545    13      8   5   9     9      12     3      8     2     1    2

1852235     6545    13      8   5   9     9      12     3      8     2     1    2

1380995     6545    13      8   5   9     9      12     3      8     2     1    2

-1446445    85085   1       11  7   0     0                                          -17C

1547        1547    55      12  4   26    26     20     20     12    4     1    1

23375       935     91      12  6   1     1      12     6      12    6     1    1

55165       935     91      12  6   1     1      12     6      12    6     1    1

-293293     1001    85      12  8   16    16     8      16     4     8     2    1

100555      7735    11      14  8   5     5      10     5      4     3     2    2

10115       595     143     16  7   42    42     60     15     16    7     1    1

17255       595     143     16  7   42    42     60     15     16    7     1    1

3757        221     385     18  6   344   344    60     60     18    6     1    1

-222365     715     119     18  12  106   106    24     48     18    12    1    1

2387        77      1105    20  8   1036  1036   24     48     20    8     1    1

1925        385     221     20  8   152   152    24     48     20    8     1    1

1771        77      1105    20  8   1036  1036   24     48     20    8     1    1

-1209533    221     385     22  14  114   114    60     60     22    14    1    1

-763997     221     385     22  14  114   114    60     60     22    14    1    1

-1274065    1105    77      22  14  37    37     30     30     22    14    1    1

-1092845    1105    77      22  14  37    37     30     30     22    14    1    1

-1153841    221     385     22  14  114   114    60     60     22    14    1    1

-937261     221     385     22  14  114   114    60     60     22    14    1    1

-1287325    1105    77      22  14  37    37     30     30     22    14    1    1

19261       187     455     24  12  1     1      12     12     12    12    2    1

24871       1309    65      24  12  1     1      12     12     12    12    2    1

857395      6545    13      24  15  1     1      12     3      12    3     2    5

89375       715     119     25  14  2     2      24     48     1     14    2    1

2275        455     187     26  12  174   174    40     80     26    12    1    1

19565       455     187     26  12  174   174    40     80     26    12    1    1

46291       119     715     28  16  146   146    60     60     28    16    1    1

63427       1547    55      28  16  36    36     20     20     8     16    2    1

115115      5005    17      31  18  9     9      8      16     7     2     4    2

19591       143     595     32  16  256   256    24     48     8     16    2    1

4147        143     595     32  16  256   256    24     48     8     16    2    1

697         17      5005    36  12  911   911    60     60     36    12    1    1

833         119     715     36  12  196   196    60     60     36    12    1    1

1751        17      5005    36  12  911   911    60     60     36    12    1    1

4369        17      5005    36  12  911   911    60     60     36    12    1    1

1105        1105    77      38  16  25    25     30     30     8     16    2    1

16445       715     119     39  18  43    43     24     48     15    18    2    1

5083        221     385     40  20  331   331    60     60     40    20    1    1

7           7       12155   44  8   6561  6561   120    240    44    8     1    1

8041        187     455     48  24  1     1      12     12     12    12    4    2

5797        187     455     48  24  1     1      12     12     12    12    4    2

935         935     91      48  24  1     1      12     6      12    6     4    4

6643        91      935     52  24  356   356    40     80     12    24    2    1

51947       7       12155   56  32  11306 11306  120    240    56    32    1    1

37835       35      2431    56  32  1582  1582   120    240    56    32    1    1

45157       7       12155   56  32  11306 11306  120    240    56    32    1    1

24059       7       12155   56  32  11306 11306  120    240    56    32    1    1

36197       7       12155   56  32  11306 11306  120    240    56    32    1    1

28651       7       12155   56  32  11306 11306  120    240    56    32    1    1

12803       7       12155   56  32  11306 11306  120    240    56    32    1    1

44765       35      2431    56  32  1582  1582   120    240    56    32    1    1

11515       35      2431    56  32  1582  1582   120    240    56    32    1    1

73339       7       12155   56  32  11306 11306  120    240    56    32    1    1

38171       7       12155   56  32  11306 11306  120    240    56    32    1    1

6307        119     715     56  32  581   581    60     60     56    32    1    1

12047       7       12155   56  32  11306 11306  120    240    56    32    1    1

51023       7       12155   56  32  11306 11306  120    240    56    32    1    1

42595       35      2431    56  32  1582  1582   120    240    56    32    1    1

34741       7       12155   56  32  11306 11306  120    240    56    32    1    1

15385       85      1001    60  30  1     1      60     30     60    30    1    1

6035        85      1001    60  30  1     1      60     30     60    30    1    1

1859        143     595     64  32  86    86     24     48     16    32    3    1

715         715     119     75  42  8     8      24     48     3     42    4    1

10549       77      1105    76  40  16    16     24     48     4     40    4    1

11765       65      1309    82  44  191   191    120    240    82    44    1    1

3179        187     455     84  48  1     1      12     12     12    12    7    4

23647       221     385     84  48  71    71     60     60     24    48    2    1

1331        11      7735    96  48  1     1      24     48     24    48    4    1

8327        11      7735    96  48  1     1      24     48     24    48    4    1

9449        11      7735    96  48  1     1      24     48     24    48    4    1

9515        55      1547    96  48  1     1      24     48     24    48    4    1

5027        11      7735    96  48  1     1      24     48     24    48    4    1

3091        11      7735    96  48  1     1      24     48     24    48    4    1

2365        55      1547    96  48  1     1      24     48     24    48    4    1

605         55      1547    96  48  1     1      24     48     24    48    4    1

889         7       12155   100 40  8856  8856   120    240    100   40    1    1

7007        1001    85      100 56  16    16     8      16     4     8     13   4

8015        35      2431    112 64  1225  1225   120    240    112   64    1    1

7021        119     715     112 64  81    81     60     60     52    4     2    2

9667        7       12155   112 64  3656  3656   120    240    112   64    1    1

19859       7       12155   112 64  3656  3656   120    240    112   64    1    1

1463        77      1105    116 56  1036  1036   24     48     20    8     5    2

781         11      7735    120 48  1     1      24     48     24    48    5    1

9823        11      7735    132 72  4096  4096   24     48     12    24    6    2

13321       77      1105    132 72  781   781    24     48     12    24    6    2

4165        595     143     140 80  100   100    60     15     20    5     3    6

4009        1       85085   156 72  65976 65976  120    240    36    72    2    1

1469        13      6545    156 72  526   526    120    240    36    72    2    1

685         5       17017   156 72  14925 14925  120    240    36    72    2    1

2063        1       85085   156 72  65976 65976  120    240    36    72    2    1

1355        5       17017   156 72  14925 14925  120    240    36    72    2    1

1567        1       85085   156 72  65976 65976  120    240    36    72    2    1

1223        1       85085   156 72  65976 65976  120    240    36    72    2    1

2297        1       85085   156 72  65976 65976  120    240    36    72    2    1

3605        35      2431    156 72  339   339    120    240    36    72    2    1

4313        1       85085   156 72  65976 65976  120    240    36    72    2    1

1357        1       85085   156 72  65976 65976  120    240    36    72    2    1

1853        17      5005    156 72  911   911    60     60     36    12    3    2

3529        1       85085   156 72  65976 65976  120    240    36    72    2    1

1933        1       85085   156 72  65976 65976  120    240    36    72    2    1

409         1       85085   156 72  65976 65976  120    240    36    72    2    1

1927        1       85085   156 72  65976 65976  120    240    36    72    2    1

5785        65      1309    156 72  526   526    120    240    36    72    2    1

1267        7       12155   156 72  5201  5201   120    240    36    72    2    1

1327        1       85085   156 72  65976 65976  120    240    36    72    2    1

529         1       85085   156 72  65976 65976  120    240    36    72    2    1

3475        5       17017   156 72  14925 14925  120    240    36    72    2    1

3961        17      5005    156 72  911   911    60     60     36    12    3    2

5447        13      6545    156 72  526   526    120    240    36    72    2    1

1           1       85085   156 72  65976 65976  120    240    36    72    2    1

3731        91      935     160 80  1     1      40     80     40    80    4    1

3029        13      6545    160 80  1871  1871   120    240    40    80    2    1

10855       65      1309    164 88  1138  1138   120    240    44    88    2    1

12563       17      5005    168 96  2731  2731   60     60     48    36    3    2

1699        1       85085   168 96  7736  7736   120    240    48    96    2    1

21347       1       85085   168 96  7736  7736   120    240    48    96    2    1

27637       1       85085   168 96  7736  7736   120    240    48    96    2    1

539         77      1105    188 104 1036  1036   24     48     20    8     8    3

3839        11      7735    192 96  1     1      24     48     24    48    8    2

1003        17      5005    240 120 1     1      60     60     60    60    4    2

3479        7       12155   268 136 4436  4436   120    240    28    136   3    1

341         11      7735    288 144 1     1      24     48     24    48    12   3

793         13      6545    320 160 5611  5611   120    240    80    160   3    1

2881        1       85085   324 168 50506 50506  120    240    84    168   3    1

3005        5       17017   324 168 16472 16472  120    240    84    168   3    1

457         1       85085   324 168 50506 50506  120    240    84    168   3    1

3305        5       17017   324 168 16472 16472  120    240    84    168   3    1

1721        1       85085   324 168 50506 50506  120    240    84    168   3    1

4447        1       85085   324 168 50506 50506  120    240    84    168   3    1

1193        1       85085   324 168 50506 50506  120    240    84    168   3    1

899         1       85085   492 264 4096  4096   120    240    12    24    5    2

 

 

Appendix B

 

ith, kth Generation Type [1,2] Mersenne Hailstones

 

  • A hailstone is the last number of a partial Collatz sequence (for the sequence 27, 82, 41, 124, 62, 31, the hailstone is 31).
  • A Mersenne Hailstone is any hailstone that is Mersenne Number (a power of 2 minus one, such as 31).
  • Type [1,2] means the hailstone is preceded by a [1,2] Sequence Vector.
  • kth Generation means the Sequence Vector is repeated k times.
  • ith identifies which of the infinite number of kth Generation solutions.
  • 31 is the 1st , 1st Generation Type [1,2] Mersenne Hailstone.

In the following diagram, a is a 6th generation Type [1,2] Mersenne Hailstone.

             ae_ad

                ac_ab

                   aa

generation 1 -->    z_y

                      x_w

                        v

generation 2 -->        u_t

                          s_r

                            q

generation 3 -->            p_o

                              n_m

                                l

generation 4 -->                k_j

                                  i_h

                                    g

generation 5 -->                    f_e    <-----|

                                      d_c        | Type [1,2]

                                        b        |

generation 6 -->                        a  <-----|

 

 

The 1st such hailstone, found by plugging (1,6) into the blueprint results in:

 

a = 2177149-1

 

In binary, a has 177,149 contiguous 1 bits. In decimal, it has 53,328 digits.

Starting from the hailstone, the Collatz sequence takes 2,386,509 iterations to reach 1.

Because a is a Mersenne Number, the sequence is predicted to contain 
 
    m + (1.585 * m)/0.415     or    4.819 * m
 
iterations of 3n+1, where m is the number of bits in the hailstone.

 

Therefore, the sequence should have

 

    4.819*177,149    or    853,681

 

iterations of 3n+1. It actually has

 

    854,697

 

making the prediction accuracy 99.88%

 

Notes & References:

1) Weisstein E. ‘Collatz problem’ Mathworld

http://mathworld.wolfram.com/CollatzProblem.html

2) Anonymous ‘Collatz conjecture’ Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Collatz_conjecture

3) Stadfeld P. ‘The Collatz tree’

http://members.aol.com/mensanator666/treemap/mainmap.htm

4) Weisstein E. ‘Linear congruence’ Mathworld

http://mathworld.wolfram.com/LinearCongruenceEquation.html

5) Anonymous ‘Linear congruence’ Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Linear_congruence

6) Weisstein E. ‘Euclidean algorithm’ Mathworld

http://mathworld.wolfram.com/EuclideanAlgorithm.html

7) Anonymous ‘Extended Euclidean algorithm’ Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Extended_Euclidean_Algorithm

8) Weisstein E. ‘Modular inverse’ Mathworld

http://mathworld.wolfram.com/ModularInverse.html

9) Anonymous ‘Multiplicative inverse’ Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Multiplicative_inverse 

10) Weisstein E. ‘Greatest common divisor’ Mathworld

http://mathworld.wolfram.com/GreatestCommonDivisor.html

11) Anonymous ‘Greatest common divisor’ Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Greatest_common_divisor

12) Stadfeld P. ‘Hailstone function parameters algorithm’

http://members.aol.com/mensanator666/collatz_utilities/python_code.htm#hfp

13) Stadfeld P. ‘Partition generator’

http://members.aol.com/mensanator666/collatz_utilities/python_code.htm - partitions

14) Stadfeld P. ‘Collatz_C program’

http://members.aol.com/mensanator666/collatz_utilities/python_code.htm#collatz_c